

## PRACTICAL ZONE

### CLASS-12

# **PHYSICS**

#### PHYSICS PRACTICAL TERM-1& 2

#### **EXPERIMENT – 1**

**Aim:** To determine resistance per cm of a given wire by plotting a graph of potential difference versus current. **Apparatus:** A metallic conductor (coil or a resistance wire), a battery, one way key, a voltmeter and an ammeter of appropriate range, connecting wires and a piece of sand paper, a scale.

**Formulae Used:** The resistance (R) of the given wire (resistance coil) is obtained by Ohm's Law  $\frac{V}{I} = R$ 

Where, V: Potential difference between the ends of the given resistance coil. (Conductor) I: Current flowing through it.

If *l* is the length of resistance wire, then resistance per cm of the wire =  $\frac{R}{l}$ 

#### **Observation:**

(i) Range:

Range of given voltmeter = 3 vRange of given ammeter = 500 mA



(ii) Least count:

Least count of voltmeter = 0.05v

Least count of ammeter = 10 mA

(iii) Zero error:

Zero error in ammeter,  $e_1 = 0$ 

Zero error in voltmeter,  $e_2 = 0$ 

#### **Ammeter and Voltmeter Readings:**

| Sr. No. | Ammeter Reading I (A) |        | Voltmeter R | $\frac{V}{-} = R$ |                   |
|---------|-----------------------|--------|-------------|-------------------|-------------------|
|         | Observed              | Value  | Observed    | Value             | $\frac{1}{I} = K$ |
| 1       | 50                    | 500 mA | 16          | 16x0.05=0.8       | 1.6Ω              |
| 2       | 35                    | 350 mA | 11          | 0.55              | $1.57\Omega$      |
| 3       | 32                    | 320 mA | 10          | 0.50              | $1.56\Omega$      |
| 4       | 19                    | 190 mA | 6           | 0.30              | 1.58Ω             |
| 5       | 10                    | 100 mA | 3           | 0.15              | 1.5Ω              |

Mean R = 1.56

Length of resistance wire: 28 cm

#### **Graph between potential difference & current:**

Scale: X - axis : 1 cm = 0.1 V of potential difference

Y - axis: 1 cm = 0.1 A of current

The graph comes out to be a straight line.



Potential Difference (V) ---->

**Result:** It is found that the ratio V/I is constant, hence current voltage relationship is established i.e.  $V \propto I$  or Ohm's Law is verified.

Unknown resistance per cm of given wire =  $5.57 \times 10^{-2} \Omega \text{ cm}^{-1}$ 

**Precautions:** Voltmeter and ammeter should be of proper range.

• The connections should be neat, clean & tight.

Source of Error: Rheostat may have high resistance.

The instrument screws may be loose.

#### **EXPERIMENT – 2**

Aim: To find resistance of a given wire using Whetstone's bridge (meter bridge) & hence determine the specific resistance of the material.

**Apparatus:** A meter bridge (slide Wire Bridge), a galvanometer, a resistance box, a laclanche cell, a jockey, a one-way key, a resistance wire, a screw gauge, meter scale, set square, connecting wires and sandpaper.



#### Formulae Used:

(i) The unknown resistance X is given by:

$$X = \frac{(100 - l)}{l} \times R \qquad \text{Where,}$$

R = known resistance placed in left gap.

X = Unknown resistance in right gap of meter bridge.

*l*=length of meter bridge wire from zero and upto balance point (in cm)

(ii) Specific resistance ( $\rho$ ) of the material of given wire is given  $\rho = \frac{X\pi D^2}{4L}$ 

Where,

**D**: Diameter of given wire

**L**: Length of given wire.

#### Observation Table for length (1) & unknown resistance, X:

| Sr.<br>No. | Resistance from resistance box R (ohm) | Length<br>AB = l cm | Length<br>BC = (100-l) cm | Unknown Resistance $X = R. \frac{(100 - l)}{l} \Omega$ |
|------------|----------------------------------------|---------------------|---------------------------|--------------------------------------------------------|
| 1          | 2                                      | 41                  | 59                        | 2.87                                                   |
| 2          | 4                                      | 60                  | 40                        | 2.66                                                   |
| 3          | 6                                      | 69                  | 31                        | 2.69                                                   |
| 4          | 8                                      | 76                  | 24                        | 2.52                                                   |

#### Table for diameter (D) of the wire:

|            | Linear Scale<br>Reading (N) mm | Circular Sc                                          | Observed diameter      |                        |
|------------|--------------------------------|------------------------------------------------------|------------------------|------------------------|
| Sr.<br>No. |                                | No. of circular<br>scale divisions<br>coinciding (n) | Value<br>n x (L.C.) mm | D = N + n x L.C.<br>mm |
| 1          | 0                              | 34                                                   | 0.34                   | 0.34                   |
| 2          | 0                              | 35                                                   | 0.35                   | 0.35                   |
| 3          | 0                              | 36                                                   | 0.36                   | 0.36                   |
| 4          | 0                              | 35                                                   | 0.35                   | 0.35                   |

#### **Observations:**

• Least count of screw gauge: 0.001 cm

Pitch of screw gauge: 0.1 cm

Total no. of divisions on circular scale: 100

Least Count = 
$$\frac{Pitch}{No. of \ divisions \ on \ circular \ scale}$$

 $\therefore LC = 0.001 \, cm$ 

- Length of given wire, L = 25cm Calculation:
- For unknown resistance, X:

Mean 
$$X = \frac{X_1 + X_2 + X_3 + X_4}{4} = 2.68\Omega$$

• Mean diameter, 
$$D = \frac{D_1 + D_2 + D_3 + D_4}{4} = 0.035 cm$$

• Specific Resistance, 
$$\rho = X \cdot \frac{\pi D^2}{4L} = 1.03 \times 10^{-4} \Omega \, cm$$

**Result:** Value of unknown resistance =  $2.68 \Omega$ 

Specific resistance of material of given wire =  $1.03 \times 10^{-4} \Omega cm$ 

**Precautions:** All plugs in resistance box should be tight. Plug in key, K should be inserted only while taking observations.

Sources of Error: Plugs may not be clean.

Instrument screws maybe loose.

#### **EXPERIMENT – 3**

**Aim:** To compare the E.M.F.'s of two given primary cells using a potentiometer.

**Apparatus:** A potentiometer, a laclanche cell, a Daniel cell, an ammeter, a voltmeter (0-5v), a galvanometer, a battery (or battery eliminator), a rheostat of law resistance, a resistance box, a one-way key, a two-way key, a jockey, a set square, connecting wires and a piece of sand paper.

#### Circuit Diagram :



#### **Observations:**

Range of voltmeter: 5V

Least count of voltmeter: 0.05V

E.M.F. of battery E: 3V

E.M.F. of Laclanche Cell,  $E_1$ : 1.45V E.M.F. of Daniel Cell,  $E_2$ : 1.125V

#### Fig. 4.1 : Comparison of e.m.f.'s of two cells

#### **Table for Lengths:**

| S. No. | $\begin{array}{c} \textbf{Balancing length when} \\ \textbf{E}_1 \text{ (Leclanche Cell) is in} \\ \textbf{the circuit (cm)} \\ \textbf{(l_1)} \end{array}$ | Balancing length when E <sub>2</sub> (Daniel Cell) is in circuit (cm) (l <sub>2</sub> ) | Ratio $\frac{E_1}{E_2} = \frac{l_1}{l_2}$ |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|
| 1      | 558                                                                                                                                                         | 437                                                                                     | 558/437 = 1.277                           |
| 2      | 789                                                                                                                                                         | 617                                                                                     | 1.278                                     |
| 3      | 848                                                                                                                                                         | 670                                                                                     | 1.266                                     |
| 4      | 893                                                                                                                                                         | 706                                                                                     | 1.265                                     |
| 5      | 662                                                                                                                                                         | 521                                                                                     | 1.270                                     |

Calculations: Mean  $\frac{E_1}{E_2} = 1.271$  (Unit less)

**Result:** The ratio of E.M.F.'s  $\frac{E_1}{E_2} \approx 1.27$ 

#### **Precautions:**

(i) The connections should be neat, clean & tight.

- (ii) The positive poles of the battery E and cells  $E_1$  and  $E_2$  should all be connected to the terminals at the zero of the wires.
- (iii) The jockey should not be rubbed along the wire. It should touch the wire gently.

#### **Sources of Error:**

- (i) The auxiliary battery may not be fully charged.
- (ii) The potentiometer wire may not be of uniform cross-section and material density throughout its length.
- (iii) Heating of potentiometer wire by current, may introduce some error.

#### **EXPERIMENT – 4**

**Aim:** To determine the internal resistance of a primary cell using a potentiometer.

**Apparatus:** A potentiometer, a battery, two one-way keys, a rheostat of law resistance, a galvanometer, a high resistance box, a fractional resistance box  $(1-10\Omega)$ , an ammeter, a voltmeter (0-5V), a cell, a jockey, a set square, connecting wires & piece of sand paper.

#### Circuit Diagram :



Fig. 5.1: Internal Resistance of a Cell

#### **Observations:**

- (i) EMF of battery = 2V EMF of cell = 1.35V
- (ii) Table for lengths:

| Sr. No. | Position of 1             | Null pt (cm)                | Value of shunt         | Internal resistance                                        |
|---------|---------------------------|-----------------------------|------------------------|------------------------------------------------------------|
|         | Without shunt R, $l_1$ cm | With shunt $R_1$ , $l_2$ cm | resistance $R(\Omega)$ | $\mathbf{r} = \left(\frac{l_1 - l_2}{l_2}\right) R \Omega$ |
| 1       | 571                       | 67                          | 1                      | 7.53                                                       |
| 2       | 619                       | 91                          | 1.5                    | 8.10                                                       |
| 3       | 689                       | 129                         | 2                      | 8.68                                                       |
| 4       | 749                       | 196                         | 2.5                    | 7.05                                                       |
| 5       | 882                       | 221                         | 3                      | 8.97                                                       |
| 6       | 950                       | 289                         | 3.5                    | 7.9                                                        |

**Result:** The internal resistance of the given cell is  $8.11\,\Omega$ 

#### **Precautions:**

- (i) The EMF of the battery should be greater than that of cell.
- (ii) For one set of observations, the ammeter reading should remain constant.
- (iii) Rheostat should be adjusted so that initial will point lies on last wire of potentiometer.

#### **Sources of Error:**

- (i) The auxiliary battery may not be fully charged.
- (ii) End resistance may not be zero.
- (iii) Heating of potentiometer wire by current, may introduce some error.

#### **EXPERIMENT – 5**

**Aim:** To find the focal length of a convex mirror using a convex lens.

**Apparatus:** An optical bench with four uprights (2 fixed upright in middle two outer uprights with lateral movement), convex lens, convex mirror, a lens holder, a mirror holder, 2 optical needles (one thin, one thick), a knitting needle, a half meter scale.



Fig.: 10.1 Focal Length of Convex Mirror

#### Formula Used:

Focal length of a convex mirror  $f = \frac{R}{2}$ 

Where R is radius of curvature of the mirror.

#### **Observation:**

- (i) Actual length of knitting needle, x = 15 cm.
- (ii) Observed distance between image needle I and back of convex mirror, y = 15 cm
- (iii) Index error = y x

= 15 - 15

=0 cm

No index correction

#### **Observation Table:**

|       |               | Radius of |        |              |           |  |
|-------|---------------|-----------|--------|--------------|-----------|--|
| S. N. | Object needle | Lens      | Mirror | Image needle | Curvature |  |
|       | 0 (cm)        | Lcm       | M cm   | I (cm)       | MI (cm)   |  |
| 1     | 25            | 50        | 56     | 70.5         | 14.5      |  |
| 2     | 28.5          | 50        | 60     | 73.3         | 13.3      |  |
| 3     | 31.5          | 50        | 65     | 78.4         | 13.4      |  |
| 4     | 30.5          | 50        | 60     | 74           | 14        |  |

Mean R = 13.8

#### **Calculation:**

Mean corrected 
$$MI = R = 13.8$$
 cm

$$f = \frac{R}{2} = 6.9 \ cm$$

#### **Result:**

The focal length of the given convex mirror = 6.9 cm

#### **Precautions:**

- (i) The tip of the needle, centre of the mirror & centre of lens should be at the same height.
- (ii) Convex lens should be of large focal length.
- (iii) For one set of observations, when the parallax has been removed for convex lens alone, the position of the lens & needle uprights should not be changed.

#### **EXPERIMENT - 6**

**Aim:** To find the focal length of a convex lens by plotting a graph:

(i) between 
$$u$$
 and  $v$  (ii) between  $\frac{1}{u}$  and  $\frac{1}{v}$ 

**Apparatus:** An optical bench with three uprights, a convex lens, lens holder, two optical needles, a knitting needles & a half-metre scale.



Fig. 11.1: Focal Length of Convex Lens

#### Formula Used:

The relation between u, v and f for convex lens is:

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

Where f: focal length of convex lens

u: distance of object needle from lens' optical centre.

v: distance of image needle from lens' optical centre.

#### **Observations:**

- (i) Rough focal length of the lens = 10 cm
- (ii) Actual length of knitting needle, x = 15 cm.
- (iii) Observed distance between object needle & the lens when knitting needle is placed between them, y = 15.2 cm.
- (iv) Observed distance between image needle & the lens when knitting needle is placed between them, z = 14.1 cm.
- (v) Index correction for the object distance u, x y = -0.2 cm
- (vi) Index correction for the image distance v, x z = +0.9 cm

#### **Observation Table:**

|        | Position of: (cm) |      |                 |        |        |                 |                         |
|--------|-------------------|------|-----------------|--------|--------|-----------------|-------------------------|
| S. No. | Object<br>needle  | Lens | Image<br>needle | u (cm) | v (cm) | $1/v (cm^{-1})$ | 1/u (cm <sup>-1</sup> ) |
| 1      | 66                | 50   | 26              | 16     | 24     | 0.041           | 0.062                   |
| 2      | 67                | 50   | 27              | 17     | 23     | 0.043           | 0.058                   |
| 3      | 68                | 50   | 28              | 18     | 22     | 0.045           | 0.055                   |
| 4      | 70                | 50   | 30              | 20     | 20     | 0.05            | 0.05                    |
| 5      | 75                | 50   | 33              | 23     | 17     | 0.058           | 0.043                   |
| 6      | 80                | 50   | 34              | 24     | 16     | 0.062           | 0.041                   |

#### Calculation of focal length by graphical method:

(i) u - v graph: The graph is a rectangular hyperbola:

Scale: X' axis: 1 cm = 5 cm of u

Y' axis: 1 cm = 5 cm of v

AB = AC = 2f or OC = OB = 2f



$$\therefore f = \frac{OB}{2}$$
 and also  $f = \frac{OC}{2}$ 

 $\therefore$  Mean value of f = 10.1 cm.

(ii)  $\frac{1}{u} - \frac{1}{v} graph$ : The graph is a straight line.

Scale; X' axis: 1 cm = 0.01 cm<sup>-1</sup> of  $\frac{1}{u}$ 

Y' axis: 1 cm = 0.01 cm<sup>-1</sup> of  $\frac{1}{v}$ 

Focal length,  $f = \frac{1}{OP} = \frac{1}{OQ} = 10.2cm$ .

#### **Result:**

(i) From u-v graph is, f = 10.1 cm

(ii) From 
$$\frac{1}{u} - \frac{1}{v}$$
 graph is,  $f = 10.2$  cm



#### **Precautions:**

(i) Tips of object & image needles should be at the same height as the centre of the lens.

(ii) Parallax should be removed from tip-to-tip by keeping eye at a distance at least 30 cm. away from the needle.

(iii) The image & the object needles should not be interchanged for different sets of observations.

#### **EXPERIMENT -7**

Aim: To find the focal length of a concave lens using a convex lens.

**Apparatus:** An optical bench with four uprights, a convex lens (less focal length), a concave lens (more focal length), two lens holder, two optical needles, a knitting needle & a half – metre scale.



**Formulae Used:** From lens formula, we have:

$$f = \frac{uv}{u - v}$$

#### **Observations:**

Actual length of knitting needle, x = 15 cm.

Observed distance between object needle & the lens when knitting needle is placed between them, y = 15 cm.

Observed distance between image needle & the lens when knitting needle is placed between them, z = 15 cm.

Index correction for u = x - y = 0 cm

Index correction for v = x - z = 0 cm

#### **Observation Table:**

| G N    |        | P                                | osition ( | of (cm)        |      | **         | 717         | <sub>f</sub> _ uv |
|--------|--------|----------------------------------|-----------|----------------|------|------------|-------------|-------------------|
| S. No. | 0 (cm) | L <sub>1</sub> at O <sub>1</sub> | Ι         | $\mathbf{L}_2$ | ľ    | $u = IL_2$ | $v = I'L_2$ | $J = {u - v}$     |
| 1      | 29     | 50                               | 75        | 69             | 78   | 6.0        | 9.0         | -18.0             |
| 2      | 27     | 50                               | 71.5      | 65             | 77.5 | 6.5        | 12.5        | -13.54            |
| 3      | 25     | 50                               | 70.5      | 65             | 72.8 | 5.5        | 7.8         | -18.64            |
| 4      | 28     | 50                               | 71.3      | 63             | 71.2 | 8.3        | 8.2         | -17.45            |

#### **Calculations:**

Mean 
$$f = \frac{f_1 + f_2 + f_3 + f_4}{4}$$

$$= -16.9 \text{ cm} \approx -17 \text{cm}.$$

**Result:** The focal length of given concave lens = -17 cm.

#### **Precautions:**

- (i) The lenses must be clean.
- (ii) A bright image should be formed by lens combination.
- (iii) Focal length of the convex lens should be less than the focal length of the concave lens, so that the combination is convex.